martes, 24 de abril de 2012

PLANETAS EXTERIORES

Los protoplanetas más grandes fueron lo suficientemente masivos para acumular gas del disco protoplanetario, y se cree que sus distribuciones de masa se pueden entender a partir de sus posiciones en el disco, aunque esa explicación es demasiado simple para dar cuenta de muchos otros sistemas planetarios. En esencia, el primer planetesimal joviano en alcanzar la masa crítica requerida para capturar gas de helio y subsecuentemente gas de hidrógeno es el más interior, porque - comparado con las órbitas más lejanas del Sol - aquí las velocidades orbitales son más altas, la densidad en el disco en mayor y las colisiones ocurren más frecuentemente. Así Júpiter es el joviano más grande porque acumuló gases de hidrógeno y helio por el periodo más largo de tiempo, y Saturno es el siguiente. La composición de estos dos está dominada por los gases de hidrógeno y helio capturados (aproximadamente 97% y 90% de la masa, respectivamente).

Los protoplanetas de Urano y Neptuno alcanzaron el tamaño crítico para colapsar mucho después, y por eso capturaron menos hidrógeno y helio, que actualmente constituye cerca solamente de 1/3 de sus masas totales.

Siguiendo a la captura de gas, se cree actualmente que el Sistema Solar exterior ha sido formado por migraciones planetarias. Así como la gravedad de los planetas perturbó las órbitas de los objetos del cinturón de Kuiper, muchos fueron dispersados hacia dentro por Saturno, Urano y Neptuno, mientras que Júpiter muchas veces expulsó esos objetos completamente fuera del Sistema Solar. Como resultado, Júpiter migró hacia dentro mientras que Saturno, Urano y Neptuno migraron hacia fuera. Un descubrimiento importante en el entendimiento de cómo esto condujo a la estructura actual del Sistema Solar ocurrió en 2004. En ese año, nuevos modelos de computadora de Júpiter y Saturno, mostraron que si Júpiter iniciara tomando menos de dos órbitas alrededor del Sol por cada una de Urano y Neptuno vez que Saturno completara una órbita, este patrón de migración pondría a Júpiter y Saturno en una resonancia de 2:1 cuando el periodo orbital de Júpiter llegara a ser exactamente de la mitad de la de Saturno. Esta resonancia podría poner a Urano y Neptuno en órbitas más elípticas, teniendo una probabilidad de 50% de que cambiaran lugares. El objeto que terminó siendo el más exterior (Neptuno) podría entonces ser forzado hacia fuera, al cinturón de Kuiper como inicialmente existió. La interacción subsecuente entre los planetas y el cinturón de Kuiper después de que Júpiter y Saturno pasaron por la resonancia de 2:1 puede explicar las características orbitales y las inclinaciones del eje de los planetas gigantes exteriores. Urano y Saturno acabaron donde están debido a las interacciones con Júpiter y entre ellos, mientras que Neptuno terminó en su lugar actual porque es ahí donde el cinturón de Kuiper terminaba inicialmente. La dispersión de los objetos del cinturón de Kuiper puede explicar el intenso bombardeo tardío que ocurrió aproximadamente hace 4 mil millones de años

EL ORIGEN DEL SISTEMA SOLAR



Las teorías concernientes a la formación y evolución del Sistema Solar son variadas y complejas, involucrando varias disciplinas científicas, desde la astronomía y la física hasta la geología y la ciencia planetaria. A través de los siglos se han desarrollado muchas teorías sobre su formación pero no fue sino hasta el siglo XVIII que el desarrollo de la teoría moderna tomó forma. Con la llegada de la era espacial las imágenes y estructuras de otros mundos en el Sistema Solar refinaron nuestra comprensión, mientras que los avances en física nuclear nos dieron un primer vistazo a los procesos sostenidos por las estrellas y nos guiaron hacia las primeras teorías sobre su formación y posteriormente, sobre su destrucción.
File:M42proplyds.jpgLa hipótesis actual sobre la formación del Sistema Solar es la hipótesis nebular, propuesta por primera vez por Emanuel Swedenborg. En 1775 Immanuel Kant, quien estaba familiarizado con el trabajo de Swedenborg, desarrolló la teoría más ampliamente. Una teoría similar fue formulada independientemente por Pierre-Simon Laplace. en 1796. La teoría nebular sostiene que hace 4,6 mil millones de años el Sistema Solar se formó por un colapso gravitacional de una nube molecular gigante. Esta nube inicial tenía probablemente varios años luz de largo y fue la sede del nacimiento de varias estrellas. Aunque el proceso era visto como relativamente tranquilo, estudios recientes de antiguos meteoritos revelan restos de elementos solamente formados en los núcleos de estrellas muy grandes que explotan, indicando que el ambiente en el que el Sol se formó estaba dentro del alcance de algunas supernovas cercanas. La onda de choque de estas supernovas pudo haber desencadenado la formación del Sol a través de la creación de regiones de sobredensidad en la nebulosa circundante, causando el colapso de ellas.

martes, 17 de abril de 2012

BIG CRUNCH

En cosmología, la Gran Implosión (también conocida como Gran Colapso o directamente mediante el término inglés Big Crunch) es una de las teorías que se barajaban en el siglo XX sobre el destino último del universo, hoy descartada a favor de un modelo de universo en expansión permanente.
La teoría de la Gran Implosión propone un universo cerrado. Según esta teoría, si el universo tiene una densidad crítica superior a 3 átomos por metro cúbico, la expansión del universo, producida en teoría por la Gran Explosión (o Big Bang) irá frenándose poco a poco hasta que finalmente comiencen nuevamente a acercarse todos los elementos que conforman el universo, volviendo al punto original en el que todo el universo se comprimirá y condensará destruyendo toda la materia en un único punto de energía como el anterior a la Teoría de la Gran Explosión.
El momento en el cual acabaría por pararse la expansión del universo y empezaría la contracción depende de la densidad crítica del Universo; obviamente, a mayor densidad mayor rapidez de frenado y contracción -y a menor densidad, más tiempo para que se desarrollaran eventos que se prevé tendrían lugar en un universo en expansión perpetua.

Fase de contracción

La fase de contracción y los procesos físicos que tendrían lugar en ella serían casi simétricos a la fase de expansión. En primer lugar, debido a la finitud de la velocidad de la luz, los astrónomos tardarían en ver cómo el desplazamiento al rojo de las galaxias distantes va desapareciendo primero de las más cercanas y finalmente de las más alejadas y se convierte en todas ellas en un desplazamiento al azul. La temperatura de la radiación cósmica empezaría a aumentar y llegaría un momento en el que sería idéntica a la actual, cuando el universo tuviera el mismo tamaño que hoy -aunque su evolución habría proseguido con el tiempo y no sería un universo cómo el actual, sino en el mejor de los casos un universo menos rico en estrellas y más abundante en cadáveres estelares.

El Big Bounce

Según esta teoría, tras la Gran Implosión podría tener lugar una nueva Gran Explosión; e incluso este universo podría proceder de un universo anterior que también se comprimió en su Gran Implosión. Si esto hubiera ocurrido repetidas veces, nos encontraríamos ante un universo oscilatorio; donde cada universo termina con una Gran Implosión y da lugar a un nuevo universo con una gran Explosión. Sin embargo, no sólo no se conoce qué podría provocar tal rebote sino que la teoría de un universo oscilante entra en contradicción con la segunda ley de la termodinámica; a menos que en cada ciclo se produjera una destrucción y reinicio totales del universo, con la desaparición de las leyes físicas existentes y la aparición de nuevas leyes físicas, y/o la entropía se "rebobinara" durante la fase de contracción (por ejemplo, se ha sugerido que el tiempo iría al revés durante ésta fase), no sólo la cantidad de agujeros negros iría aumentando en cada ciclo sino que la radiación existente en el universo aumentaría a costa de la materia -debido a las reacciones de fusión nuclear producidas en el interior de las estrellas, en las que parte de la materia que compone los átomos que se fusionan se transforma en energía-, con el resultado de que los "rebotes" serían cada vez más largos hasta llegar a un escenario no demasiado diferente de la expansión indefinida; todo ello tendría cómo consecuencia que debería haber habido un número finito de ciclos antes del actual. Además, el reciente descubrimiento de la energía oscura ha provocado que muchos cosmólogos abandonen la teoría de este universo oscilante y junto con otros descubrimientos, también la de que el universo sea cerrado, aunque al no conocerse bien la naturaleza de la energía oscura aún no puede descartarse por completo un colapso futuro.

Vida en un universo en contracción

Del mismo modo que se ha especulado con las posibles formas de vida existentes en un universo en expansión eterna, también se ha hecho lo mismo con las existentes en los momentos finales de un universo en contracción (durante los estados iniciales de dicha contracción, así cómo incluso ya avanzada ésta y gracias a la tecnología que pudieran desarrollar para adaptarse a las condiciones existentes por entonces, dichos seres vivos no serían muy distintos a nosotros -al menos en el sentido de estar basados en el carbono y basar su metabolismo en reacciones químicas-), y como en el primer caso, dichas formas de vida serían radicalmente distintas a nosotros. A diferencia del escenario de la expansión eterna, el problema aquí no es la falta de energía sino su exceso. De acuerdo con John Barrow y Frank Tipler, que han estudiado en detalle lo que ocurriría en las fases finales de un universo en contracción, un hipotético ser que existiera en ésas condiciones tan extremas tendría una tasa metabólica muy acelerada y por tanto una tasa de procesado de la información (es decir, una velocidad de pensamiento) también muy elevada, que al ir aumentando la temperatura iría aumentando (todo ello siempre y cuando pudiera deshacerse del calor producido por sus procesos metabólicos). Ello tendría cómo consecuencia que el tiempo subjetivo (el tiempo desde la perspectiva de tal ser) se alargaría considerablemente, de modo que mientras para un observador externo (que no podría existir) parecería que el universo se colapsaba en una fracción de segundo, para dicho ser podría tardar en ocurrir mucho tiempo, incluso en algunos casos que jamás ocurriría bajo la condición que el colapso del universo no fuera homogéneo, sino cómo parece más probable desigual (es decir, que la velocidad de contracción fuera distinta y variara).


El Big Bang

En cosmología física, la teoría del Big Bang o teoría de la gran explosión es un modelo científico que trata de explicar el origen del Universo y su desarrollo posterior a partir de una singularidad espaciotemporal. Técnicamente, este modelo se basa en una colección de soluciones de las ecuaciones de la relatividad general, llamados modelos de Friedmann- Lemaître - Robertson - Walker.

La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía y homogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del Universo antes o después en el tiempo.
Una consecuencia de todos los modelos de Big Bang es que, en el pasado, el Universo tenía una temperatura más alta y mayor densidad y, por tanto, las condiciones del Universo actual son muy diferentes de las condiciones del Universo pasado. A partir de este modelo, George Gamow en 1948 pudo predecir que debería de haber evidencias de un fenómeno que más tarde sería bautizado como radiación de fondo de microondas.

Michio Kaku ha señalado cierta paradoja en la denominación Big Bang (gran explosión): en cierto modo no puede haber sido grande ya que se produjo exactamente antes del surgimiento del espacio-tiempo, habría sido el mismo Big Bang lo que habría generado las dimensiones desde una singularidad; tampoco es exactamente una explosión en el sentido propio del término ya que no se propagó fuera de sí mismo.
Basándose en medidas de la expansión del Universo utilizando observaciones de las supernovas tipo 1a, en función de la variación de la temperatura en diferentes escalas en la radiación de fondo de microondas y en función de la correlación de las galaxias, la edad del Universo es de aproximadamente 13,7 ± 0,2 miles de millones de años. Es notable el hecho de que tres mediciones independientes sean consistentes, por lo que se consideran una fuerte evidencia del llamado modelo de concordancia que describe la naturaleza detallada del Universo.

El universo en sus primeros momentos estaba lleno homogénea e isótropamente de una energía muy densa y tenía una temperatura y presión concomitantes. Se expandió y se enfrió, experimentando cambios de fase análogos a la condensación del vapor o a la congelación del agua, pero relacionados con las partículas elementales.
Aproximadamente 10-35 segundos después del tiempo de Planck un cambio de fase causó que el Universo se expandiese de forma exponencial durante un período llamado inflación cósmica. Al terminar la inflación, los componentes materiales del Universo quedaron en la forma de un plasma de quarks-gluones, en donde todas las partes que lo formaban estaban en movimiento en forma relativista. Con el crecimiento en tamaño del Universo, la temperatura descendió, y debido a un cambio aún desconocido denominado bariogénesis, los quarks y los gluones se combinaron en bariones tales como el protón y el neutrón, produciendo de alguna manera la asimetría observada actualmente entre la materia y la antimateria. 

Las temperaturas aún más bajas condujeron a nuevos cambios de fase, que rompieron la simetría, así que les dieron su forma actual a las fuerzas fundamentales de la física y a las partículas elementales. Más tarde, protones y neutrones se combinaron para formar los núcleos de deuterio y de helio, en un proceso llamado nucleosíntesis primordial. Al enfriarse el Universo, la materia gradualmente dejó de moverse de forma relativista y su densidad de energía comenzó a dominar gravitacionalmente sobre la radiación. Pasados 300.000 años, los electrones y los núcleos se combinaron para formar los átomos (mayoritariamente de hidrógeno). Por eso, la radiación se desacopló de los átomos y continuó por el espacio prácticamente sin obstáculos. Ésta es la radiación de fondo de microondas.
Al pasar el tiempo, algunas regiones ligeramente más densas de la materia casi uniformemente distribuida crecieron gravitacionalmente, haciéndose más densas, formando nubes, estrellas, galaxias y el resto de las estructuras astronómicas que actualmente se observan. Los detalles de este proceso dependen de la cantidad y tipo de materia que hay en el Universo. Los tres tipos posibles se denominan materia oscura fría, materia oscura caliente y materia bariónica. Las mejores medidas disponibles (provenientes del WMAP) muestran que la forma más común de materia en el universo es la materia oscura fría. Los otros dos tipos de materia sólo representarían el 20 por ciento de la materia del Universo.

  
Base teórica

En su forma actual, la teoría del Big Bang depende de tres suposiciones:
  1. La universalidad de las leyes de la física, en particular de la teoría de la relatividad general
  2. El principio cosmológico
  3. El principio de Copérnico